Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
BMJ Open Respir Res ; 10(1)2023 05.
Article in English | MEDLINE | ID: covidwho-2321360

ABSTRACT

BACKGROUND: Spread of SARS-CoV2 by aerosol is considered an important mode of transmission over distances >2 m, particularly indoors. OBJECTIVES: We determined whether SARS-CoV2 could be detected in the air of enclosed/semi-enclosed public spaces. METHODS AND ANALYSIS: Between March 2021 and December 2021 during the easing of COVID-19 pandemic restrictions after a period of lockdown, we used total suspended and size-segregated particulate matter (PM) samplers for the detection of SARS-CoV2 in hospitals wards and waiting areas, on public transport, in a university campus and in a primary school in West London. RESULTS: We collected 207 samples, of which 20 (9.7%) were positive for SARS-CoV2 using quantitative PCR. Positive samples were collected from hospital patient waiting areas, from hospital wards treating patients with COVID-19 using stationary samplers and from train carriages in London underground using personal samplers. Mean virus concentrations varied between 429 500 copies/m3 in the hospital emergency waiting area and the more frequent 164 000 copies/m3 found in other areas. There were more frequent positive samples from PM samplers in the PM2.5 fractions compared with PM10 and PM1. Culture on Vero cells of all collected samples gave negative results. CONCLUSION: During a period of partial opening during the COVID-19 pandemic in London, we detected SARS-CoV2 RNA in the air of hospital waiting areas and wards and of London Underground train carriage. More research is needed to determine the transmission potential of SARS-CoV2 detected in the air.


Subject(s)
COVID-19 , Chlorocebus aethiops , Animals , Humans , COVID-19/epidemiology , RNA, Viral , SARS-CoV-2 , London/epidemiology , Pandemics , Vero Cells , Communicable Disease Control , Respiratory Aerosols and Droplets , Particulate Matter/analysis
2.
Molecular Frontiers Journal ; 6(1n02), 2022.
Article in English | ProQuest Central | ID: covidwho-2194056

ABSTRACT

A link between outdoor pollution of particulate matter (PM) and the mortality from COVID-19 disease has been reported. The potential interaction of SARS-CoV2 emitted from an infected subject in the form of droplets or as an aerosol with PM2.5 (PM of 2.5 μm or less in aerodynamic diameter) may modulate SARS-CoV2 replication and infectivity. This may represent an important airborne route of transmission, which could lead to pneumonia and a poor outcome from COVID-19. Further studies are needed to assess the potential infectivity and severity of such transmission.

3.
Atmosphere ; 13(12):2067, 2022.
Article in English | MDPI | ID: covidwho-2154879

ABSTRACT

Indoor, airborne, transmission of SARS-CoV-2 is a key infection route. We monitored fourteen different indoor spaces in order to assess the risk of SARS-CoV-2 transmission. PM2.5 and CO2 concentrations were simultaneously monitored in order to understand aerosol exposure and ventilation conditions. Average PM2.5 concentrations were highest in the underground station (261 ±62.8 μgm-3), followed by outpatient and emergency rooms in hospitals located near major arterial roads (38.6 ±20.4 μgm-3), the respiratory wards, medical day units and intensive care units recorded concentrations in the range of 5.9 to 1.1 μgm-3. Mean CO2 levels across all sites did not exceed 1000 ppm, the respiratory ward (788 ±61 ppm) and the pub (bar) (744 ±136 ppm) due to high occupancy. The estimated air change rates implied that there is sufficient ventilation in these spaces to manage increased levels of occupancy. The infection probability in the medical day unit of hospital 3, was 1.6-times and 2.2-times higher than the emergency and outpatient waiting rooms in hospitals 4 and 5, respectively. The temperature and relative humidity recorded at most sites was below 27 °C, and 40% and, in sites with high footfall and limited air exchange, such as the hospital medical day unit, indicate a high risk of airborne SARS-CoV-2 transmission.

4.
Phys Fluids (1994) ; 33(4): 046605, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1209639

ABSTRACT

A recent study reported that an aerosolized virus (COVID-19) can survive in the air for a few hours. It is highly possible that people get infected with the disease by breathing and contact with items contaminated by the aerosolized virus. However, the aerosolized virus transmission and trajectories in various meteorological environments remain unclear. This paper has investigated the movement of aerosolized viruses from a high concentration source across a dense urban area. The case study looks at the highly air polluted areas of London: University College Hospital (UCH) and King's Cross and St Pancras International Station (KCSPI). We explored the spread and decay of COVID-19 released from the hospital and railway stations with the prescribed meteorological conditions. The study has three key findings: the primary result is that the concentration of viruses decreases rapidly by a factor of 2-3 near the sources although the virus may travel from meters up to hundreds of meters from the source location for certain meteorological conditions. The secondary finding shows viruses released into the atmosphere from entry and exit points at KCSPI remain trapped within a small radial distance of < 50 m. This strengthens the case for the use of face coverings to reduce the infection rate. The final finding shows that there are different levels of risk at various door locations for UCH; depending on which door is used there can be a higher concentration of COVID-19. Although our results are based on London, since the fundamental knowledge processes are the same, our study can be further extended to other locations (especially the highly air polluted areas) in the world.

SELECTION OF CITATIONS
SEARCH DETAIL